COFINITE-GENERALIZED-HOLLOW *LIFTING* MODULES

Noor M. Mosa, Wasan Khalid

Department of Mathematics , College of Science

University of Baghdad, Baghdad – Iraq

 $\underline{noor.mosa327@gmail.com}\ , \underline{Wasankhalid65@gmail.com}$

ABSTRACT: Let R be any ring with identity, and let M be a unitary left R-module. A submodule N of M is called generalized small submodule of M denoted by $(N \ll_G M)$, if for every essential submodule K of M with M = N + K implies K = M. A submodule K of M is called G-coessential of N in M if $\frac{N}{K} \ll_G \frac{M}{K}$. M is called cofinite generalized lifting_g module, if every cofinite submodule N of M, N has a generalized coessential submodule in M which is a direct summand of M. in this paper we introduce a cofinite generalized hollow lifting_g module. M is called cofinite generalized hollow lifting_g module for short C-G-hollow lifting_g module, if for every cofinite submodule N of M with $\frac{M}{N}$ is G-hollow, N has a generalized coessential submodule N of M. and we study some properties of this type of modules.

Keywords : generalized small submodule , cofinite-generalized-hollow module , cofinite-generalized-lifting module.

1-INTRODUCTION:

Throughout this paper R is a ring with identity, and every R-module is a unitary left R-module , N⊆ M denotes N is a submodule of M . Let M be an R-module , and let $N \subseteq M$, N is called essential submodule of M (denoted by $N \subseteq_{\rho} M$) if every non zero submodule K of M, we have $N \cap K \neq$ 0 [1]. A submodule N of M is called small submodule of M (denoted by $N \ll M$), if for every $K \subseteq M$, M = N + Kimplies K = M[1]. A non zero module M is called hollow if every proper submodule of M is small, [1]. Rad(M) is the sum of all small submodules of M [1]. A submodule N of M is called generalized-small submodule of M (for short G-small) and (denoted by $N \ll_G M$), if for every $K \subseteq_e M$, M=N+K implies K=M [2]. $Rad_g(M)$ is the sum of all Gsmall submodules of M [2], It clear that $Rad(M) \subseteq$ $Rad_{a}(M)$, but the converse in general is not true. A nonzero module M is called generalized-hollow (for short, G-hollow), if every proper submodule of M G-small (in [3] , it is denoted by (e-hollow) .

A Submodule K of M is called coessential submodule of N in M (denoted by K $\subseteq_{Ce} N$) if $\frac{N}{K} \ll \frac{M}{K}$, [4]. A submodule K of M is called G-coessential submodule of N in M (denoted by K \subseteq_{Gce} N), if $\frac{N}{K} \ll_{G} \frac{M}{K}$. an R-module M is called generalized lifting or satisfies (GD1), if for every submodule N of M, there exists a direct summand K of M, such that K \subseteq_{GCe} N in M [3]. It is clear that every lifting module is a generalized lifting module . In [6] Orhan and Tribak are introduce hollow lifting module , A module M is called hollow lifting , if for every submodule N of M with $\frac{M}{N}$ is hollow , N has coessential submodule of M that is a direct summand of M. In this paper we introduce a cofinite generalized hollow module (for short C-G-hollow). We give the some basic properties of C-G-hollow modules . Also we introduce cofinite generalized *liftingg*

module as a generalization of hollow lifting module . we prove some results similar to results of hollow lifting modules .

2. Cofinite generalized hollow module

It is know that a non zero R-module M is called G-hollow module , if every proper submodule of M is G-small . in this section we define a cofinite generalized hollow module (in short C-G-hollow) and we study some properties of this type of modules .

Definition 2.1[2]: A submodule N of M is called generalized small submodule of M (for short, G-small) and (denoted by N $\ll_G M$), if for every $K \subseteq_e M$, M=N+K implies K = M.

And a nonzero module M is called generalized-hollow (for short, G-hollow), if every proper submodule of M G-small .(in [3] it is denoted by e-hollow).

Now we introduce the following :-

Definition 2.2 : A non zero R-module is called cofinitegeneralized hollow module (for short C-G-hollow), if for every proper cofinite submodule of M is G-small.

Remarks and Examples 2.3 :-

- 1- It is clear that every semisimple module is C-Ghollow module.
- 2- Every hollow is C-G-hollow module.
- 3- The converse of (2) is not true in general, Q as Zmodule is not hollow, and the only cofinite submodule of Q is Q which is not proper hence Q is C-G-hollow module.
- 4- If M is finitely generated and every submodule of M is closed, then M is C-G-hollow module. Since M is finitely generated then every submodule of M is cofinite in M, and since every submodule of M is closed hence every submodule is G-small in M.

- 5- It is clear that Z_4 as Z-module is C-G-hollow module, since $\{\overline{0}, \overline{2}\}$ is cofinite, G-small in Z_4 .
- 6- Z as Z-module is not C-G-hollow. to see that, consider $3Z \subset Z$, 3Z is cofinite submodule of Z. but 3Z+2Z=Z and $2Z \subset_e Z$, $2Z \neq Z$. hence 3Z is not G-small in Z.

<u>Remark 2.4:</u> A direct sum of C-G-hollow modules need not C-G-hollow as the following example shows:-

The Z-modules Z_4 , Z_3 are C-G-hollow, but $Z_4 \oplus Z_3 \cong Z_{12}$ is not C-G-hollow Z-module. Since $<\bar{3} > +<\bar{2} >= Z_{12}$, $<\bar{2} > \subset_e Z_{12}$, $<\bar{2} > \neq Z_{12}$, that is $<\bar{3} >$ is not G-small in Z_{12} .

Recall that a submodule N of M is called fully invariant if $f(N) \subseteq N$ for every $f \in End(M)$. and an R-module M is called duo module, if every submodule of M is fully invariant, [6].

Proposition 2.5: Let $M = M_1 \bigoplus M_2$ be a duo R-modules . if M_1 and M_2 are C-G-hollow of M , provided $N \cap M_i \neq M_i$ for all i = 1, 2, then M is C-G-hollow .

Proof: Let N be cofinite proper submodule of M, then $N=(N \cap M_1) \bigoplus (N \cap M_2)$, $N \cap M_1 \subset M_1$ and $N \cap M_2 \subset M_2$, [6].

$$Now_{N}^{M} = \frac{tM_{1} \oplus M_{2}}{N} = \frac{tM_{1} + N}{N} \oplus \frac{M_{2} + N}{N}$$
$$= \frac{tM_{1} + (N \cap tM_{1}) + (N \cap tM_{2})}{(N \cap tM_{1}) \oplus (N \cap tM_{2})} \oplus \frac{tM_{2} + (N \cap tM_{1}) + (N \cap tM_{2})}{(N \cap tM_{1}) \oplus (N \cap tM_{2})}$$
$$\cong \frac{M_{1}}{(N \cap M_{1})} \oplus \frac{M_{2}}{((N \cap M_{2}))}$$
$$Now \frac{\frac{M}{M_{1} + N}}{\frac{M_{1} + N}{N}} \cong \frac{M}{M_{1} + N} = \frac{M_{1} \oplus M_{2}}{M_{1} + N} = \frac{(M_{1} + N) + M_{2}}{(M_{1} + N)} \cong \frac{M_{2}}{(M_{1} + N) - M_{2}} = \frac{M_{2}}{N \cap M_{2}}, \text{therefore}$$
$$\frac{M_{2}}{N \cap M_{2}} \text{ is finitely generated.}$$

Similarly $\frac{M_1}{N \cap M_1}$ is finitely generated, henc $N \cap M_1$ and $N \cap M_2$ are cofinite submodules of M_1 and M_2 respectively. Since M_1 and M_2 are C-G-hollow, then $N \cap M_1$ and $N \cap M_2$ are G-small submodules of M_1 and M_2 respectively. Thus $N=(N \cap M_1) \bigoplus (N \cap M_2)$ is G-small, [7], therefore M is C-G-hollow.

Recall that an R-module M is called distributive if for all N, W, $K \subseteq M$, $N \cap (K + W) = (N \cap K) + (N \cap W)$.

Equivalently, $N + (K \cap W) = (N + K) \cap (N + W)$ [8].

Proposition 2.6: Let $M = M_1 \oplus M_2$ be R-module with $M_1, M_2 \subseteq M$ and M is distributive, provided $N \cap M_i \neq M_i$ for all i = 1, 2 and $N \subseteq M$. if M_1, M_2 are C-G-hollow then M is C-G-hollow.

<u>Proposition 2.7:</u>Let N be Proper submodule of M , if M is C-G-hollow then M/N is C-G-hollow.

<u>Proof:</u> Let $\frac{K}{N} \subset \frac{M}{N}$ and $K \neq M$. Such that $\frac{K}{N}$ is cofinite submodule of $\frac{M}{N}$, then $\frac{M/N}{K/N} \cong \frac{M}{K}$ is finitely generated, then K is a cofinite submodule of M, since M is C-G-hollow then $K \ll_G M$. Hence $\frac{K}{N} \ll_G \frac{M}{N}$ [7].

<u>Corollary 2.8:</u>The nonzero homomorphic image of C-G-hollow module is C-G-hollow.

<u>Proof</u> :- since every homomorphic image is isomorphic to a quotient module .

<u>Corollary 2.9:</u> The direct summand of C-G-hollow is again C-G-hollow .

Proposion 2.10: Let M be an R-module, Let $N \subseteq M$, if M/N is C-G-hollow, and $N \ll_G M$, then M is C-G-hollow.

<u>Proof:</u> Let $L \subset M$ such that M/L is finitely generated and let M=L+K, $K \subset_e M$, then

 $\frac{M}{N} = \frac{L+N}{N} + \frac{K+N}{N} , \frac{L+N}{N} \neq \frac{M}{N}, \text{ if } \frac{L+N}{N} = \frac{M}{N}, \text{ then } \frac{K+N}{N} \subseteq \frac{L+N}{N}$ hence $K \subseteq L$ but M=L+K then M=L, which is a contradiction, thus $\frac{L+N}{N} \neq \frac{M}{N}$.

Now $\frac{M}{L} = \frac{M+N}{L+N} = \frac{M}{L+N}$ then $\frac{M}{L+N}$ is finitely generated, but $\frac{\frac{M}{N}}{\frac{L+N}{N}} \cong \frac{M}{L+N}$, thus $\frac{L+N}{N}$ is cofinite in $\frac{M}{N}$. And $\frac{K+N}{N} \subseteq_{e} \frac{M}{N}$, since $\frac{M}{N}$ is C.G.hollow, then $\frac{K+N}{N} = \frac{M}{N}$, then K+N=M, by assumption N $\ll_{G} M$, hence K=M.

Proposion 2.11:Let M be an C-G-hollow R-module . If M has a cofinite proper essential submodule N of M with every submodule of N is cofinite in N, then M is finitely generated.

<u>Proof</u>: Let $N \subset M$, $N \subset_e M$ with M/N is finitely generated, then

$$\frac{M}{N} = \mathbf{R}(x_1, N) + \mathbf{R}(x_2, N) + \dots + \mathbf{R}(x_n, N) \text{, for } x_1, x_2, \dots, x_n \in N, \text{ hence } \frac{M}{N} = \mathbf{R}x_1 + \mathbf{R}x_2 + \dots + \mathbf{R}x_n + N$$

Then m + N= $r_1x_1 + r_2x_2 + \dots + r_nx_n + N$, for m $\in M, r_1, r_2, \dots, r_n \in R$.

If m- $r_1x_1 + r_2x_2 + \cdots + r_nx_n \in N$, hence

$$m - r_1 x_1 + r_2 x_2 + \dots + r_n x_n = n$$

$$m = r_1 x_1 + r_2 x_2 + \dots + r_n x_n + n$$

$$m = < x_1, x_2, \dots, x_n > +N$$

Let K = < x_1, x_2, \dots, x_n >

Now M=K+N, if $K \neq M$, then $\frac{M}{K} = \frac{N+k}{K} \cong \frac{N}{N \cap K}$

Since $\frac{N}{N \cap K}$ is finitely generated (by assumption) then $\frac{M}{K}$ is finitely generated , thus K is cofinite proper submodule of

M but M is C-G-hollow , and N ⊂_eM , then M=N wich is a contradiction , thus M=K=< $x_1,x_2,\cdots,x_n >$

Then M is finitely generated.

3- C-G-Hollow Modules and C-G-Lifting Modules

As it is known that every hollow is lifting . we define C-G-lifting and show that every C-G-hollow module is C-G-lifting.

Definition 3.1: An R-module M is called C-G-Lifting module , if for every cofinite submodule A of M , there exists a direct summand B of M such that $\frac{A}{B} \ll_G \frac{M}{B}$ in M.

The following theorem gives a characterization of C-G-Lifting modules.

Theorem 3.2: Let M be an R-module. Then the following statements are equivalent :-

- 1- M is C-G-Lifting.
- 2- For every cofinite submodule A in M, there is a decomposition $M = M_1 \bigoplus M_2$ such that $M_1 \subseteq A$ and $A \cap M_2 \ll_G M_2$.
- 3- Every cofinite submodule A of M can be written as $A = B \bigoplus S$, where B is a direct summand of M and $S \ll_G M$.

Proof: $1 \rightarrow 2$)Suppose M is C-G-Lifting and let A cofinite submodule of M, there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \subseteq A$ and $\frac{A}{M_1} \ll_G \frac{M}{M_1}$. Now $A = A \cap M = A$ $\cap (M_1 \oplus M_2)$, hence by modular law, $A = M_1 \oplus (A \cap M_2)$. Define $\emptyset: \frac{M}{M_1} \rightarrow M_2$ by $\emptyset(m + M_1) = m_2$ where $m = m_1 + m_2$, $m_1 \in M_1, m_2 \in M_2$. It is clear that \emptyset is an isomorphism. As $\frac{A}{M_1} \ll_G \frac{M}{M_1}$, then $\emptyset(\frac{A}{M_1}) \ll_G M_2$, [7]. But $\emptyset(\frac{A}{M_1}) = A \cap M_2$. Hence $A \cap M_2 \ll_G M_2$.

2→**3**) Let A be a cofinite submodule of M. By (2), there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq A$ and $A \cap M_2 \ll_G M_2$ and hence $A \cap M_2 \ll_G M$ by [7]. Now A = $A \cap M = A \cap (M_1 \oplus M_2)$. So by modular law, A = $M_1 \oplus (A \cap M_2)$, let $S = A \cap M_2$. Thus $A = M_1 \oplus S$ where $M_1 \subseteq_{\oplus} M$ and $S \ll_G M$.

3→**1**) Let A be a cofinite submodule of M. By (3), A can be written as A = B ⊕ S, where B is a direct summand of M and S≪_G M. To show that $\frac{A}{B} \ll_G \frac{M}{B}$. Let $\frac{M}{B} = \frac{A}{B} + \frac{X}{B}$ where $\frac{X}{B} \subseteq_e \frac{M}{B}$, then M = A + X, X⊆_eM, But S≪_G M, so that X=M and hence $\frac{X}{B} = \frac{M}{B}$ and hence $\frac{A}{B} \ll_G \frac{M}{B}$.

Remark 3.3: Let M be an R-module then M is C-G-lifting if and only if for each cofinite submodule A of M there is a decomposition $M = M_1 \bigoplus M_2$ such that $M_1 \subseteq A$ and $(A \cap M_2) \ll_G M$.

Remarks and Examples 3.4:

- Every lifting is C-G-lifting, for example: Z₄as Zmodule is C-G-lifting.
- 2- The converse of (1) in general is not true, consider Q as Z-module, since the only cofinite submodule of Q is Q, hence $\exists \{0\} \subseteq Q, \{0\} \subseteq_{\bigoplus} Q$, $Q = \{0\} \bigoplus Q, Q \cap \{0\} = 0 \ll_G Q$, thus Q is C-Glifting but not lifting.
- 3- Consider Z_{24} as Z-module, each of the following submodule $(\overline{2}), (\overline{4}), (\overline{6}), (\overline{8}), (\overline{12}), (\overline{0})$ is G-small .Tak N= $(\overline{2}), N = (\overline{0}) \oplus N, (\overline{0}) \subseteq_{\oplus} Z_{24}, N \ll_G Z_{24}$ Similarly the other submodules satisfy condition (3) of Theorem (3.2). Now take N= $(\overline{3}), N =$ $(\overline{3}) \oplus (\overline{0}), (\overline{3}) \subseteq_{\oplus} Z_{24}, \text{and } (\overline{0}) \ll_G$. Also $Z_{24} =$ $(\overline{3}) \oplus (\overline{8}), (\overline{3}) \ll_G Z_{24}, \text{and } (\overline{8}) \ll_G Z_{24}$, hence Z_{24} as Z-module is C-G-lifting.

Proposition 3.5: Let $M = M_1 \oplus M_2$ be R-module with $M_1, M_2 \subseteq M$ and M is distributive, provided $N \cap M_i \neq M_i$ for all i = 1, 2 and $N \subseteq M$. if M_1, M_2 are C-G-lifting then M is C-G-lifting.

<u>Proof:</u> Let N be cofinite submodule of M, then $N=(N \cap M_1) \oplus (N \cap M_2), N \cap M_1 \subset M_1$ and $N \cap M_2 \subset M_2$.

$$\begin{split} \operatorname{Now}_{N}^{\underline{M}} &= \frac{M_{1} \oplus M_{2}}{N} = \frac{M_{1} + N}{N} \bigoplus \frac{M_{2} + N}{N} \\ &= \frac{M_{1} + (N \cap M_{1}) + (N \cap M_{2})}{(N \cap M_{1}) \oplus (N \cap M_{2})} \bigoplus \frac{M_{2} + (N \cap M_{1}) + (N \cap M_{2})}{(N \cap M_{1}) \oplus (N \cap M_{2})} \\ &\cong \frac{M_{1}}{(N \cap M_{1})} \bigoplus \frac{M_{2}}{((N \cap M_{2}))} \\ \operatorname{Now} \quad \frac{\frac{M}{N}}{\frac{M_{1} + N}{N}} \cong \frac{M}{M_{1} + N} = \frac{M_{1} \oplus M_{2}}{M_{1} + N} = \frac{(M_{1} + N) + M_{2}}{(M_{1} + N)} \cong \\ \frac{M_{2}}{(M_{1} + N) \cap M_{2}} \equiv \frac{M_{2}}{N \cap M_{2}}, \text{ therefore} \\ \\ \frac{M_{2}}{N \cap M_{2}} \text{ is finitely generated}. \\ \operatorname{Similarly} \quad \frac{M_{1}}{N \oplus M_{1}} \text{ is finitely generated} \quad , \quad \text{hence} \quad N \cap \end{split}$$

Similarly $\frac{1}{N \cap M_1}$ is finitely generated, hence $N \cap M_1$ and $N \cap M_2$ are cofinite submodules of M_1 and M_2 respectively. Since M_1 and M_2 are C-G-lifting, then $\exists K_1 a \text{ direct summand of } M_1, M_1 = K_1 \oplus K_1'$, $K_1' \subseteq M$ such that $\frac{N \cap M_1}{K_1} \ll_G \frac{M_1}{K_1}$

And $\exists K_2 a \text{ direct summand of } M_2$, $M_2 = K_2 \oplus K_2^{'}$, $K_2^{'} \subseteq M$ such that

 $\frac{N \cap M_2}{K_2} \ll_G \frac{M_2}{K_2}$, Thus $M = K_1 \oplus K_2 \oplus K_1' \oplus K_2'$, then $K_1 \oplus K_2$ is a direct summand of M.

N=
$$(N \cap M_1) \oplus (N \cap M_2)$$
 and $\frac{(N \cap M_1) \oplus (N \cap M_2)}{K_1 \oplus K_2} \ll_G \frac{M}{K_1 \oplus K_2}$.
Then M is C-G-lifting.

<u>**Proposition 3.6:**</u>Let N be proper submodule of M , if M is C-G-lifting then M/N is C-G-lifting .

Proof: Let $\frac{K}{N} \subset \frac{M}{N}$ and $K \neq M$. Such that $\frac{K}{N}$ is cofinite submodule of $\frac{M}{N}$, then $\frac{M/N}{K/N} \cong \frac{M}{K}$ is finitely generated, then K is a cofinite submodule of M, since M is C-G-lifting then $\exists K_1 a \text{ direct summand of } M$ such that $\frac{K}{K_1} \ll_G \frac{M}{K_1}$ then $\frac{K/N}{K_1/N} \ll_G \frac{M/N}{K_1/N}$, [7].

<u>Corollary 3.7:</u>The nonzero homomorphic image of C-G-lifting module is C-G-lifting.

<u>Corollary 3.8:</u> The direct summand of C-G-lifting is again C-G-lifting .

Proposition 3.9: Every C-G-hollow module is C-G-lifting .

Proof: Let $N \subset M$ such that M/N is finitely generated. Then $M = (\overline{\partial}) \bigoplus M$, $(\overline{\partial}) \subseteq N$, $N \cap M = N \ll_G M$. Thus M is C-G-lifting.

.<u>Remark 3.10:</u>The converse of Proposition (3.9) is not true in general for example Z_{12} as Z-module is C-G-lifting but it is not C-G-hollow, since Take N= ($\overline{2}$) is cofinite submodule of Z_{12} which is not G-small.

But under certain condition we have :-

<u>Proposition 3.11:</u> Let M be a non zero indecomposable R-module then the following are equivalent :-

- 1- M is C-G-hollow.
- 2- M is C-G-lifting.

<u>Proof:</u> $1 \rightarrow 2$) by proposition 3.9.

2 → 1) Let N be a proper cofinite submodule of M, by (2), ∃ K⊆N such that M=K⊕K', K'∩N ≪_G M. but M is indecomposable then either K=0 or K=M, if K=M, then N=M which is a contradiction, thus K=0, hence K'=M and K'∩N=M∩N≪_G M=N.

<u>Notice that</u> Z as Z-module (by proposition 3.11) is not C-G-lifting module since it is not C-G-hollow .

<u>Remark 3.12</u>. If M is C-G-hollow, then M needn't be indecomposable, for example Z_6 as Z-module is C-G-hollow, but not indecomposable.

4-Cofinite Generalized Hollow *lifting* Module

In this section we introduce cofinite generalized hollow $lifting_g$ module as a generalization of generalized hollow lifting module.

Definition 4.1:-An R-module M is called cofinite generalized hollow $lifting_g$ module (for short C-G-hollow $ifting_g$ module), if for every cofinite submodule N of M with $\frac{M}{N}$ is G-hollow, there exist a direct summand K of M, $k \subseteq N$, such that $M = K \oplus K'$, $K' \subseteq M$, and $N \cap K' \ll_G M$.

Examples and Remarks 4.2:-

- 1- Every semi-simple module is C-G-hollow $ifting_g$ module . in particular it is clear that Z_6 as Zmodule is C-G-hollow $lifting_g$ module.
- 2- Every lifting module is C-G-hollow $lifting_g$ module.
- 3- Every hollow module is C-G-hollow $lifting_g$ module.
- 4- The converse of (2) and (3) is not true in general, consider Q as Z-module, since the only cofinite submodule of Q is Q, hence Q is C-G-hollow $lifting_{a}$, but not lifting and hence not hollow.
- 5- If M is C-G-hollow , then M is C-G-hollow $lifting_g$ module , to see that let N be a cofinite submodule of M such that M/N is G-hollow, then $N \ll_G M$, hence $\exists 0 \subset N$, $0 \subseteq_{\bigoplus} M$, $M = 0 \bigoplus M$, $M \cap N = N \ll_G M$, thus N is C-G- $lifting_g$ module.
- 6- It is clear that Z as Z-module is not C-G-hollow $lifting_g$ module. To see that, assume that Z is C-G-hollow $lifting_g$ module, consider $4Z \subseteq Z$, $\frac{Z}{4Z}$ is hollow, hence C-G-hollow, then $\exists K \subseteq_{\bigoplus} Z$, $K \subseteq 4Z$. But Z is indecomposable, then K=0 or K=Z if K=Z then 4Z=Z which is a contradiction. then K=0 hence $4Z \ll_G Z$ which is a contradiction. then Z is not C-G-hollow $lifting_g$.

<u>Proposition 4.3:</u> Let M be a non zero indecomposable module , then the following are equivalent:

- 1- M is C-G-hollow $lifting_q$ module.
- 2- M is C-G-hollow or else M has no G-hollow factor module for every cofinite submodule of M.

Proof: $1 \rightarrow 2$) suppose that M has a G-hollow factor module for every cofinite submodule of M, and let N be a proper cofinite submodule of M, then by assumption, M/N is Ghollow, by (1) $\exists K \subseteq N, K \subseteq_{\bigoplus} M$, i.e. $M = K \bigoplus K'$, for $K' \subseteq M, N \cap K' \ll_G M$, but M is indecomposable thus either K=M or K=0, if K=M, then N=M which is a contradiction hence K=0, i.e. K' = M and $N \cap K' = N \cap$ $M = N \ll_G M$. therefore M is C-G-hollow module

 $2 \rightarrow 1$ Clear.

<u>Proposition 4.4:</u> Let M be any R-module, then the following are equivalent :

1. M is a C-G-hollow $lifting_{g}$ module.

2. Every cofinite submodule N of M, with $\frac{M}{N}$ is G-hollow, has a G-supplement K in M such that $N \cap K \subseteq_{\bigoplus} N$.

<u>Proof:</u> $1 \rightarrow 2$) Let *N* be a cofinite submodule of *M* with $\frac{M}{N}$ is G-hollow since M is a C-G-hollow lifting_g module, then $\exists K \subseteq_{\bigoplus} M$, $K \subseteq N$ such that $M = K \bigoplus K'$ and $N \cap K' \ll_G M$. thus M = N + K', $N \cap$ 577 Sci.Int.(Lahore),30(4), 573-578,2018 ISSN 1013-53 $K' \ll_G M$, hence $N \cap K' \ll_G M$. To prove $\cap K' \subseteq_{\bigoplus} N$. since $= K \oplus K'$, then $N \cap M = N = (N \cap K) \oplus (N \cap K') = K \oplus (N \cap K')$, hence $N \cap K' \subseteq_{\bigoplus} N . 2 \rightarrow 1$) Let N be a submodule of M, with $\frac{M}{N}$ is G-hollow by (2), $\exists K \subseteq M$, M=N+K, $N \cap K \ll_G M$ and $N \cap K \subseteq_{\bigoplus} N$, $N=(N \cap K) \oplus L$, $L \subseteq N$. $M=(N \cap K) \oplus L + K = L+K$. let $x \in L \cap K$ then $x \in L$ and $x \in K$; since $L \subseteq N$ then $x \in N$, then $x \in L$ and $x \in N \cap K$. but $L \oplus (N \cap K) = 0$, then x = 0, then $M = L \oplus K$ i.e. $K \subseteq_{\bigoplus} M$ and $N \cap K \ll_G M$.

Proposition 4.5: let M be an R-module , then M is C-G-hollow $lifting_g$ module if and only if for every cofinite submodule N of M with $\frac{M}{N}$ is G-hollow , then there exists an idempotent $f \in End(M)$ with $f(M) \subset N$ and $(1 - f)(N) \ll_G (1 - f)(M)$.

<u>**Proof:-**</u>→)Assume that M is C-G-hollow *lifting*_g module , let $N \subseteq M$ with $\frac{M}{N}$ is G-hollow , then (by proposition 4.4) N has a G-supplement K in M such that $N \cap K \subset_{\bigoplus} N$, then M = N + K, $N \cap K \ll_G M$, $N = (N \cap K) \oplus L$ for $L \subseteq N$.

Note That : $M = N + K = (N \cap K) + L + K = L + K$, and $N \cap L \cap K = 0$ then $L \cap K = 0$ then $M = K \oplus L$.

Let $f: M \to L$ be the projection map $(M) \subset L \subset N$.

It is enough to show that $(1 - f)(N) \ll_G (1 - f)(M)$, one can easily to show that $(1 - f)(N) = N \cap (1 - f)(M) = N \cap K \ll_G (M)$.

←) Let N be a cofinite submodule of M with $\frac{M}{N}$ is G-hollow . by assumption \exists an idempotent $f \in End(M)$ such that $f(M) \subseteq N$ and $(1 - f)(N) \ll_G (1 - f)(M)$ and clearly $M = f(M) \oplus (1 - f)(M)$ and $N \cap (1 - f)(M) = (1 - f)(N) \ll_G (1 - f)(M)$, thus M is C-G-hollow lifting_g.

<u>Proposition 4.6</u>: Let M be a G-hollow module , Then the following are equivalent:

1. M is a C-G-hollow $lifting_g$ module.

2. M is a C-G-lifting module.

<u>Proof</u> : $1 \rightarrow 2$ let N be a cofinite submodule of M , then by $[3], \frac{M}{N}$ is C-G-hollow and by (1) M is C-G-lifting.

 $2 \rightarrow 1$ Clear.

Proposition 4.7: Let M be an R-module , M is a C-G-hollow $lifting_g$ module if and only if every cofinite submodule N of M such that $\frac{M}{N}$ G-hollow, can be written as $N = K \oplus L$, where K is a direct summand of M and $L\ll_G (M)$.

<u>Proof</u> : \rightarrow)Let N \subseteq M, with $\frac{M}{N}$ is G-hollow, since M be a C-G-hollow *lifting* module, then there exist a direct summand K of M, K \subseteq N $M = K \oplus K'$, $K' \subseteq M$ and

 $N \cap K' \ll_G M$, then $N = N \cap M = N \cap (K \oplus K') = K \oplus (N \cap K')$.

←) Let N⊆ M, with $\frac{M}{N}$ is G-hollow, then by (2) $N = K \oplus L$ where K is a direct summand of M and $L \ll_G M$, then M= $K \oplus K'$ and $K' \cap N = K' \cap (K \oplus L) = K' \cap L \subseteq$ $L \ll_G M$. Hence M is C-G-hollow *lifting*_g module.

<u>Proposition 4.8</u>: Let M be any R-module and let $N \subseteq M$, if M is a C-G-hollow $lifting_g$ module, then $\frac{M}{N}$ is a C-G-hollow $lifting_g$ module.

Proof: let $\frac{K}{N} \subseteq \frac{M}{N}$ such that $\frac{\frac{M}{N}}{\frac{K}{N}} \cong \frac{M}{K}$ is G-hollow. Since M is C-G-hollow $lifting_g$, then $\exists L \subseteq_{\bigoplus} M, M = L \oplus L'$, $L \subseteq K$, $L' \cap K \ll_G M$. Now $\frac{M}{N} = \frac{L \oplus L'}{N} = \frac{L+N}{N} \oplus \frac{L'+N}{N}$ and $\frac{L'+N}{N} \cap \frac{K}{N} = \frac{(L'+N)\cap K}{N} = \frac{(L'-K)+N}{N} \ll_G \frac{M}{N}$.

<u>Corollary</u> 4.9: The homomorphic image of C-G-hollow $lifting_g$ module is again C-G-hollow $lifting_g$.

Corollary 4.10:

The direct summand of C-G-hollow $lifting_g$ module is again C-G-hollow $lifting_g$ module.

Proposition 4.11 :- Let $M = M_1 \oplus M_2$ be duo module, if M_1 , M_2 are C-G-hollow $lifting_g$, then M is C-G-hollow $lifting_g$.

<u>Proof</u> :- Let N be a cofinite submodule of M such that $\frac{M}{N}$ is G-hollow, then $N = (N \cap M_1) \oplus (N \cap M_2)$.

$$\frac{M}{N} = \frac{M_1 \oplus M_2}{N} = \frac{M_1 + N}{N} \oplus \frac{M_2 + N}{N} \cong \frac{M_1}{M_1 \cap N} + \frac{M_2}{M_2 \cap N}.$$

Thus $\frac{\frac{M}{N}}{\frac{M_2}{M_2 \cap N}} \cong \frac{M_2}{M_2 \cap N}$. since $\frac{M}{N}$ is G-hollow , then $\frac{M_2}{M_2 \cap N}$ is G-hollow , and similarly $\frac{M_1}{M_1 \cap N}$ is G-hollow , since M_1 , M_2 are C-G-hollow lifting_g module , since M_1 , M_2 are C-G-hollow lifting_g module , then $\exists K_1 \subseteq_{\bigoplus} M_1$, $K_1 \subseteq M_1 \cap N$ such that $M_1 = K_1 \bigoplus L_1$, $L_1 \subseteq M_1$ and $L_1 \cap (M_1 \cap N) \ll_G M$.

$$\exists K_2 \subseteq_{\bigoplus} M_2 \ , \ K_2 \subseteq M_2 \cap N \text{ such that } M_2 = K_2 \bigoplus L_2 \ ,$$

$$L_2 \subseteq M_2 \text{ and } L_2 \cap (M_2 \cap N) \ll_G M .$$

$$\begin{split} \mathbf{M} &= M = M_1 \oplus M_2 = K_1 \oplus L_1 \oplus K_2 \oplus L_2 = K_1 \oplus K_2 \oplus L_1 \oplus L_2 \\ \text{then } K_1 \oplus K_2 \subseteq_{\oplus} M \text{ and } \mathbf{N} = (\mathbf{N} \cap M_1) \oplus (\mathbf{N} \cap M_2) \text{ and} \\ \frac{(\mathbf{N} \cap M_1) \oplus (\mathbf{N} \cap M_2)}{K_1 \oplus K_2} \ll_G \frac{M}{K_1 \oplus K_2}, \text{ then } \mathbf{M} \text{ is } \mathbf{C}\text{-}\mathbf{G}\text{-hollow } lifting_g \\ \underline{\mathbf{Corollary 3.12 :-}} \text{ let } M = M_1 \oplus M_2 \oplus \dots \oplus M_n \text{ be a duo} \\ \text{module if } \forall i = 1, 2, \dots, n, M_i \text{ is } \mathbf{G}\text{-hollow } lifting_g \text{ then} \\ \mathbf{M} \text{ is } \mathbf{G}\text{-hollow } lifting_g. \end{split}$$

Proposition 4.13 : Let M be an R-module with $Rad_g(M) = 0$, then M is C-G-hollow $lifting_g$ module if and only if every submodule N of M with $\frac{M}{N}$ is G-hollow is a direct summand of M.

Proof: \rightarrow) Let Nbe a cofinite submodule of M with $\frac{M}{N}$ is G-hollow, since M is C-G-hollow $lifting_g$, then $\exists K \subseteq_{\bigoplus} M, K \subseteq N$ and $M = K \oplus K', N \cap K' \ll_G M$, then, hence $N \cap K' \subseteq Rad_g(M) = 0$ thus $M = N \oplus K'$ hence $N \subseteq_{\bigoplus} M$.

 $\begin{array}{ll} \leftarrow) \mbox{ Let } N \mbox{ be a cofinite submodule of } M, \ N \ \mbox{is cofinite} \\ \mbox{in } M \mbox{ and } \frac{M}{N} \mbox{ is } G\mbox{-hollow , hence } N \subseteq_{\oplus} M, \mbox{ then } M = N \oplus K, \\ K \subseteq M \ \mbox{ and } N \cap K = 0 \ll_G M \ , \ \mbox{ hence } M \ \mbox{ is } C\mbox{-G-hollow } \\ lifting_g \ \mbox{module.} \end{array}$

Proposition 4.14:- Let R be a non zero indecomposable and M is projective R-module , if M is C-G-hollow *lifting*_g module , then $\forall a \in M$ with $\frac{M}{Ra}$ is G-hollow and Ra is cofinite in M either Ra is projective summand of M or Ra $\ll_G M$.

Proof: Let $a \in M$ with $\frac{M}{Ra}$ is G-hollow then by proposition (4.7) $Ra = K \oplus L$ for $L \subseteq Ra$ and K is a direct summand of M. $L \ll_G M$. Let $\emptyset: R \to Ra$ defined by : $\emptyset(r) = ra$, $\forall r \in R$, \emptyset is epimorphisim. Let $\rho: Ra \to K$ be the projective map. $\rho \circ \emptyset: R \to K$ is an epimorphism. consider the following :-

$$\mathbf{0} \to \ker(\boldsymbol{\rho} \circ \boldsymbol{\emptyset}) \xrightarrow{i} R \xrightarrow{\boldsymbol{\rho} \circ \boldsymbol{\emptyset}} K \to \mathbf{0}$$

Where i is the inclusion map . since K is a direct summand of M and M is projective then K is projective , the sequence is splites thus ker($\rho \circ \emptyset$) is a direct summand of R.

But ker($\rho \circ \emptyset$)={ $r \in R$; ($\rho \circ \emptyset$) = 0}

$$= \{r \in R ; \emptyset(r) \in L\} = \emptyset^{-1}(L).$$

Thus $\phi^{-1}(L)$ is a direct summand of R , but R is indecomposable thus $\phi^{-1}(L)=0$ or $\phi^{-1}(L)=R$. Hence either L=0 thus Ra=K , hence Ra is projective direct summand or $\phi^{-1}(L) = R$, thus $\phi\phi^{-1}(L) = \phi(R)$

then L = Ra

But $\cap Ra \ll_G M$, hence. Hence $Ra \ll_G M$.

REFERENCES:-

- 1- Wisbauer, R.1991. Foundations of Modules and rings theory. Gordon and Breach, Philadelphia.
- 2- Kosar B., Nebiyev C. and Sökmez N., 2015 ,G. Supplemented Modules , Ukrainian Mathematical journal, 67 No. 6, 861 – 864.
- 3- I.M.A.Hadi, S.H.Aidi.,2015 On e-Hollow modules ,International journal of Advanced Sc. And Technical Reserch, Issue5-Vol.(3)2249-9954.
- 4- R. C. Courter, The maximal corational extension by a module, Can. J. Math., (18) 1966,953-962.
- 5- Nil Orhan, Derya Keskin Tütüncü and Rachid Tribak , On Hollow Lifting Modules, Taiwanese Journal Of Mathematics, 2007, Vol(11), No. 2, pp. 545-568.
- 6- Ozcan A.C., Harmanci A., Smith P.F., Duo modules, Glagow Math. J. Trust., 2006,48,533-545,.
- 7- D.X.Zhou and X.R.Zhang, Small-Essential Submodules and Morita Duality, Southeast Asian Bull. Math., 35 (2011), 1051-1062.
- 8- C.Faith, Rings Modules and Categories I, Springer Verlage, Berline, Heidelberg, New York, (1973).